Thin-Slot/Thin-Layer Subcell FDTD Algorithms for EM Penetration through Apertures
نویسندگان
چکیده
منابع مشابه
A General Fdtd Algorithm Handling Thin Dispersive Layer
A novel general technique for treating electrically thin dispersive layer with the finite difference time domain (FDTD) method is introduced. The proposed model is based on the modifying of the node update equations to account for the layer, where the electric and magnetic flux densities are locally averaged in the FDTD grid. Then, based on the characteristics that the complex permittivity and ...
متن کاملA hybrid Crank-Nicolson FDTD subgridding boundary condition for lossy thin-layer modeling
The inclusion of thin lossy, material layers, such as carbon based composites, is essential for many practical applications modeling the propagation of electromagnetic energy through composite structures such as those found in vehicles and electronic equipment enclosures. Many existing schemes suffer problems of late time instability, inaccuracy at low frequency, and/or large computational cost...
متن کاملPerceiving affordances for fitting through apertures.
Affordances--possibilities for action--are constrained by the match between actors and their environments. For motor decisions to be adaptive, affordances must be detected accurately. Three experiments examined the correspondence between motor decisions and affordances as participants reached through apertures of varying size. A psychophysical procedure was used to estimate an affordance thresh...
متن کاملGeneration of FDTD Subcell Equations by Means of Reduced Order Modeling
Adapted finite-difference time-domain (FDTD) update equations exist for a number of objects that are smaller than the grid step, such as wires and thin slots. In this contribution we provide a technique that automatically generates new FDTD update equations for small objects. Our presentation will be focussed on 2-D-FDTD. We start from the FDTD equations in a fine grid where the time derivative...
متن کاملScientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations
The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electromagnetics
سال: 2003
ISSN: 0272-6343,1532-527X
DOI: 10.1080/02726340390159469